
The Busy Beaver Problem

Ling (Esther) Fu and Sarah Pan

May 21, 2022

Contents
Page

1 Introduction 1

2 Turing Machines 2

3 The Recursion Theorem 4

4 The Undecidability of 𝐴𝑇𝑀 6

5 Mapping Reductions 6

6 The Busy Beaver Problem 8
6.1 Implications of the Busy Beaver . 10

7 Acknowledgements 10

1 Introduction
In 1962, mathematician Tibor Radó [7] introduced the busy beaver problem. The
objective of the problem is to find an upper bound on the number of operations done
by a halting Turing machine of a given size. (Its name comes from the fact that it
writes so quickly and abundantly, reminiscent of a beaver running back and forth.)
Since there exist Turing machines of known sizes that could decide various long-
standing conjectures (includingGoldbach’s conjecture and the Riemann hypothesis),
knowing certain values of the busy beaver function would reduce determining the
truth or falsity of these conjectures to finite-step computations. Unfortunately, the
rapidly growing busy beaver function is not computable by algorithm, as we will
show in Section 6.

In this expository paper, we will start by introducing Turing machines as a model
of computation and computability (Section 2). We will then develop the machinery
used to show that the busy beaver function is uncomputable: in particular, we will
use the recursion theorem (Section 3) to show that the halting problem for Turing

1

machines is undecidable (Section 5) by amapping reduction from 𝐴𝑇𝑀 (Section 4).
Finally, we will show that the busy beaver function is uncomputable and briefly
discuss the problem’s implications (Section 6).

2 Turing Machines
The Turing machine (TM), first introduced in 1936 by mathematician Alan Turing,
models a modern computer in that it can implement any computer algorithm. It is
commonly represented with a finite state control and an infinite tape as its unlimited
memory. Upon taking an input, the machine may either accept, reject, or loop (i.e.,
never halt).

In this section, we will introduce TMs, primarily following the exposition in
Chapter 3 of Michael Sipser’s Introduction to the Theory of Computation [8]. To
define a TMmore formally, we start with some definitions to describe the input and
tape format.

Definition 2.1. An alphabet is an nonempty finite set. We call members of the set
symbols of the alphabet.

Definition 2.2. A string is a finite combination of symbols of an alphabet. A
language is a set of strings.

In future sections, we will use angle bracket notation ⟨⋅⟩ as a way to denote string
representations of other objects. Now a TMmay be defined as follows:

Definition 2.3. A Turing machine (TM) is a 7-tuple (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject),
where 𝑄,Σ,Γ are finite sets and

1. 𝑄 is a set of states,

2. Σ is the input alphabet, excluding the blank character ⊔,

3. Γ is the tape alphabet, where ⊔ ∈ Γ and Σ ⊆ Γ,

4. 𝛿: 𝑄 × Γ⟶ 𝑄 × Γ × {𝐿, 𝑅} is the transition function,

5. 𝑞0 ∈ 𝑄 is the start state,

6. 𝑞accept ∈ 𝑄 is the accept state,

7. 𝑞reject ∈ 𝑄 is the reject state, where 𝑞accept ≠ 𝑞reject.

Definition 2.4. The language of a TM is the set of strings that the machine accepts.

To compute, the TM starts with its input string on the tape, and it uses a tape
head to read and edit the tape contents according to its transition function. If
𝛿(𝑞, 𝑎) = (𝑞′, 𝑏, 𝑋), then when the TM is in state 𝑞 and the tape head reads a symbol
𝑎 from the tape, the machine moves into state 𝑞′, replaces 𝑎 with 𝑏, and moves its
tape head in the direction 𝑋.

We will be interested in what problems are computable by Turing machine, or
more formally, what languages are decidable and recognizable.

2

Definition 2.5. A language 𝐴 is recognizable if some TM accepts every 𝑠 ∈ 𝐴 and
either rejects or enters an infinite loop for every 𝑠 ∉ 𝐴.

Definition 2.6. A language 𝐴 is decidable if some TM accepts every 𝑠 ∈ 𝐴 and
rejects every 𝑠 ∉ 𝐴.

Note that all decidable languages are recognizable.
To illustrate how a TM works, we consider the following example.

Example 2.7. Consider the language𝐴 = {02𝑛 |𝑛 ≥ 0} of strings of 0s whose lengths
are of powers of 2. To see that 𝐴 is decidable, we will describe a Turing machine𝑀
that decides 𝐴.

The formal description of𝑀 is (𝑄, Σ, Γ, 𝛿, 𝑞1 𝑞accept, 𝑞reject), where

1. 𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞accept, 𝑞reject};

2. Σ = {0};

3. Γ = {0, x, ⊔};

4. 𝛿∶ 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅} is illustrated by the arrows in the state diagram
below. In the diagram, an arrow from state 𝑞𝑖 to 𝑞𝑗 labeled by an expression the
form 𝑎 → 𝑏, 𝑋 indicates that 𝛿(𝑞𝑖 , 𝑎) = (𝑞𝑗 , 𝑏, 𝑋), and an arrow from 𝑞𝑖 to 𝑞𝑗
labeled by an expression of the form 𝑎 → 𝑋 indicates that 𝛿(𝑞𝑖 , 𝑎) = (𝑞𝑗 , 𝑎, 𝑋);

5. 𝑞1 is the start state;

6. 𝑞accept is the accept state; and

7. 𝑞reject is the reject state.

State diagram for the language 𝐴 = {02𝑛 |𝑛 ≥ 0} [8]

3

To see how 𝑀 computes, we consider how it operates when given the following
input:

↓
0 0 0 0 0 0 0 0

The TM𝑀 will start by replacing the first 0 with the ⊔ symbol to mark the left end
of the input tape. It will then read from left to right, crossing off every other zero, as
shown in the state diagram, as𝑀 moves back and forth between states 𝑞3 and 𝑞4.

↓
⊔ x 0 x 0 x 0 x

The TM𝑀 will then move left, back to the beginning of the tape. At this point, the
TM has returned to state 𝑞2.

Until the machine accepts or rejects, the TM𝑀 will repeat the above process,
reading from left to right, crossing off every other zero, and moving back to the
start of the tape. In the next several steps of our example,𝑀 crosses out every other
uncrossed zero and starts back at the leftmost character:

↓
⊔ x x x 0 x x x

In the final round, 𝑀 crosses out the second uncrossed 0, leaving only the ⊔
symbol uncrossed on the tape, as shown below. After returning to state 𝑞2,𝑀 will
accept and halt.

↓
⊔ x x x x x x x

Ultimately, in this scenario,𝑀 cuts the number of 0s in half until the number
reaches one (which has been replaced by a ⊔ symbol). In particular, this process
checks whether the length is a power of 2, consistent with the language of the
machine. In our example, the length of the input is 8, a power of 2; therefore, the
machine will accept upon running on input 00000000.

The Church-Turing thesis states that the intuitive notion of algorithms, pro-
posed by Alonzo Church, is essentially equivalent to Turing machine algorithms.
Moving forward, our descriptions of TMs use algorithm pseudocode rather than the
formal notation of Definition 2.3.

3 The Recursion Theorem
In this section we introduce the recursion theorem, roughly following the discussion
in Section 6.1 of Sipser’s Introduction to the Theory of Computation [8]. This theo-
rem allows a Turing machine to procure its own description and to run itself as a
subroutine. Evidently, implications of this theory serve as a tenet to self-replicating

4

programs such as computer viruses. However, the recursion theorem’s applications
are not limited to malware, as we will see in the next section.

An important part of the proof is to see that we can produce a Turing machine
that prints out any given input string. To do this, we use a particular computable
function 𝑞. Vaguely, we say a function is computable if we can describe an algorithm
that can carry out the function. We define the function 𝑞 to take an input string 𝑤
and output the description of Turing machine 𝑃𝑤 that prints out 𝑤. The following
TM 𝑄 computes 𝑞(𝑤):

𝑄 = “On input string 𝑤 :

1. Construct the Turing machine 𝑃𝑤 as follows:
𝑃𝑤 = “On any input:

(a) Write 𝑤 on the tape after the input.
(b) Halt.”

2. Output ⟨𝑃𝑤⟩.”

Theorem 3.1 (Recursion theorem). Suppose the Turing machine 𝑇 computes a
function 𝑡∶ Σ∗ × Σ∗ → Σ∗. Then there exists a Turing machine 𝑅 that computes the
function 𝑟∶ Σ∗ → Σ∗ defined by

𝑟(𝑤) = 𝑡(⟨𝑅⟩, 𝑤).

Our original goal was to allow a Turing machine to compute its own description,
which it now can! To give more insight into the problem, say that we have a TM 𝑈,
which we want to obtain its own description. The recursion theorem comes into
play when we create a TM 𝑇 to behave just like 𝑈 but with an extra first input. The
machine 𝑇 essentially simulates 𝑈 on the second input, string 𝑤, but it also records
the first input, which we interpret as the description of a machine. The recursion
theorem guarantees the existence of a machine 𝑅 such that when 𝑅 receives the
input 𝑤, it simulates 𝑇 on the second input 𝑤 but receives its own description ⟨𝑅⟩
as the first input. The construction of TM 𝑇 implies that 𝑅 simulates𝑈 on the input
𝑤 and receives its own description ⟨𝑅⟩ as an extra input.

Proof of the recursion theorem. We construct the TM 𝑅 by combining three Turing
machines 𝐴, 𝐵, and 𝑇. The role of 𝐴 is to produce a description of the TMs 𝐵 and
𝑇, and the role of 𝐵 is to produce a description of 𝐴. Then the descriptions of 𝐴, 𝐵,
and 𝑇 (or, in other words, the description of the TM 𝑅) are fed to the TM 𝑇, where
they are then used to compute on input 𝑤.

5

Figure 1: Schematic for R (see [8], p. 249)

In order to do this, we utilize 𝑞(𝑤). Constructing TM𝐴 is simple as we can define
it as the TM 𝑃⟨𝐵𝑇⟩ given by 𝑞(⟨𝐵𝑇⟩). We can use the output of this TM 𝐴 to create
𝐵’s description. In particular, the TM 𝐵 applies 𝑞 to the tape contents (produced
by 𝐴) to get ⟨𝐴⟩ since 𝐴 is defined to be the printer that prints a description of 𝐵.
Then 𝐵 combines all three parts 𝐴, 𝐵, and 𝑇 to obtain the description ⟨𝐴𝐵𝑇⟩ = ⟨𝑅⟩.
It passes control to 𝑇 after recording ⟨𝑅,𝑤⟩ on the tape.

4 The Undecidability of 𝐴𝑇𝑀

In this section, we will use the recursion theorem to prove the undecidability of the
acceptance problem for TMs. More formally,

Definition 4.1. The language 𝐴𝑇𝑀 consists of all TM𝑀s and strings 𝑤s for which
𝑀 accepts 𝑤:

𝐴𝑇𝑀 = {⟨𝑀,𝑤⟩|𝑀 is a TM and𝑀 accepts 𝑤}.

Theorem 4.2. The language 𝐴𝑇𝑀 is undecidable.

Proof. Assume that the language 𝐴𝑇𝑀 is decidable, and let some TM 𝐻 decide it.
The machine𝐻 takes the description of a machine and a string as its input. We will
construct another TM 𝐵 that runs𝐻 as a subroutine. The machine 𝐵 only takes in
a string 𝑤. By the recursion theorem, 𝐵 is able to obtain its own description ⟨𝐵⟩.
It then feeds this description and its input string 𝑤 to 𝐻. After the TM 𝐻 runs on
⟨𝐵,𝑤⟩, control is passed back to 𝐵 where the opposite is returned: if𝐻 rejects 𝑤, 𝐵
accepts, and vice versa.

Evidently, this is a contradiction because𝐻 should work on ⟨𝐵,𝑤⟩ exactly as 𝐵
works on 𝑤. The opposite is true, however, which contradicts our original assump-
tion that 𝐴𝑇𝑀 is decidable.

5 Mapping Reductions
Now that we have shown the undecidability of 𝐴𝑇𝑀 , we naturally wonder about
other languages that are undecidable. Instead of fleshing out an entirely new proof
to show undecidability, however, we can simply demonstrate that certain other
languages reduce to 𝐴𝑇𝑀 .

Formally, we define mapping reducibility as follows:

6

Definition 5.1. Language𝐴 ismapping reducible to language𝐵 (written as𝐴 ≤𝑚 𝐵)
if there is a function 𝑓 such that for every string 𝑤, we have

𝑤 ∈ 𝐴 ⟺ 𝑓(𝑤) ∈ 𝐵.

Theorem 5.2. If 𝐴 ≤𝑚 𝐵 and 𝐵 is decidable, then 𝐴 is decidable.

Proof. We can show this by letting𝑀 be the Turing machine that decides 𝐵. We
then construct a TM 𝑁 that decides 𝐴 as follows.

𝑁 = “On input 𝑤 :

1. Compute 𝑓(𝑤).

2. Run𝑀 on whatever 𝑓(𝑤) produced and output as𝑀 does.”

In proving undecidability, we will mainly use the contrapositive: if 𝐴 ≤𝑚 𝐵
and 𝐴 is undecidable, then 𝐵 is undecidable. In particular, to show a language is
undecidable, it suffices to reduce to that language from 𝐴𝑇𝑀 .

One language that will be useful in Section 6 is the following, which is broader
than 𝐴𝑇𝑀 but similar in essence:

Definition 5.3. The language𝐻𝐴𝐿𝑇𝑇𝑀 contains the descriptions of all machines
𝑀 and 𝑤 such that𝑀 halts on 𝑤:

𝐻𝐴𝐿𝑇𝑇𝑀 = {⟨𝑀,𝑤⟩|𝑀 is a TM and𝑀 halts on input 𝑤}.

This language is very similar to 𝐴𝑇𝑀 , but broader in the sense that the TM can
also reject its input. Intuition about this problem comes from the fact that we’ll
never know whether a Turing machine is taking a long time to run or if it is looping
indefinitely. As a result, we propose that𝐻𝐴𝐿𝑇𝑇𝑀 is also undecidable.

Theorem 5.4. The language𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable.

Proof. To prove the undecidability of 𝐻𝐴𝐿𝑇𝑇𝑀 , we will show that 𝐴𝑇𝑀 reduces to
𝐻𝐴𝐿𝑇𝑇𝑀 . By our definition of mapping reductions this also means that

⟨𝑀,𝑤⟩ ∈ 𝐴𝑇𝑀 ⟺ ⟨𝑀′, 𝑤′⟩ ∈ 𝐻𝐴𝐿𝑇𝑇𝑀 ,

where𝑀′ and 𝑤′ are given by the function 𝑓. We construct a TM 𝐹 as follows:
𝐹 = “On input ⟨𝑀,𝑤⟩ :

1. Construct the following machine𝑀′.
𝑀′ = “On input 𝑥:

(a) Run𝑀 on 𝑥.
(b) If𝑀 accepts, accept.
(c) If𝑀 rejects, enter a loop.”

2. Output ⟨𝑀′, 𝑤⟩.”

Because we are able to reduce the problem of whether something is in 𝐴𝑇𝑀 to
whether something is in𝐻𝐴𝐿𝑇𝑇𝑀 , it follows that𝐻𝐴𝐿𝑇𝑇𝑀 is also undecidable.

7

6 The Busy Beaver Problem
Proving the undecidability of 𝐻𝐴𝐿𝑇𝑇𝑀 is among the most important ideas in com-
putability theory. It ismore commonly known as the halting problem, and its inability
to be solved by algorithm has many intriguing applications, one of which is the busy
beaver problem.

We start by introducing a variant of the Turing machine, which we will call the
halt-state Turingmachine. The only difference between the twomachines lies in their
terminating states. Instead of having accept or reject states, the halt-state Turing
machine has an all-encompassing halt state. Everything else remains identical.

Definition 6.1. The 𝑛th busy beaver number, denoted 𝐵𝐵(𝑛), is the maximum
finite number of state shifts undergone by a halt-state Turing machine with 𝑛 non-
accept/reject states and the alphabet {0, 1}. Here, we require that each halt-state TM
under consideration actually halts (i.e., does not loop indefinitely).

The first busy beaver number is 𝐵𝐵(1) = 1. Trivially, a Turing machine with one
non-halting state can only move from its start state to its halt state. The second busy
beaver number is 6 (see [6]), which we discuss in the next example.

Figure 2: A state diagram for 𝐵𝐵(2)

Example 6.2. The figure above gives one example of a “busiest” halt-state TM with
two non-accept states: it goes through 𝐵𝐵(2) = 6 state shifts when given an input
tape of all zeros. To see how the TM operates, we illustrate its tape below. Initially it
only contains zeros. We also imagine this tape to be infinite in both directions.

↓
0 0 0 0 0 0 0 0 0

First, the TM reads a zero, which prompts it to replace it with a one and move
its tape reader to the right.

↓
0 0 0 0 1 0 0 0 0

8

Following the transition functions as described in the state diagram, we see that
the next few computations proceed as so:

↓
0 0 0 0 1 1 0 0 0

↓
0 0 0 0 1 1 0 0 0

↓
0 0 0 1 1 1 0 0 0

↓
0 0 1 1 1 1 0 0 0

↓
0 0 1 1 1 1 0 0 0

The reason the last two tapes are identical is due to our definition of 𝐵𝐵(𝑛). Orig-
inally, this function is what Radó proposed to be his shift function 𝑆(𝑛). Essentially,
𝑆(𝑛) increments every time a state is visited. Although nothing new appears on the
tape after the fifth operation, the state control finally visits state 𝐶, or the halting
state, which counts as a shift.

As mentioned earlier, one can show that the above example is a “busiest” 2-
state halt-state Turing machine, i.e., 𝐵𝐵(2) = 6. The next value in the sequence
is 𝐵𝐵(3) = 21. Although this number seems small, it was not easy to show that
this was the “busiest” 3-state Turing machine (see [6]). Intuitively, there are many
Turing machines with 𝑛 states. However, determining which machines halt, and
among those that do, which one is the “busiest” requires a lot of work. Perhaps
unsurprisingly, the busy beaver function is uncomputable by Turing machine (i.e.,
there exists no Turing machine that takes 𝑛 as input and computes 𝐵𝐵(𝑛)).

Theorem 6.3. The busy beaver function is uncomputable.

Proof. Let’s say that TM 𝐴 computes 𝐵𝐵(𝑛). We define another TM𝑀 as follows:
𝑀 = “On input ⟨𝑇⟩ :

1. Find the number of states in 𝑇 (this is included in the description of 𝑇), and
assign this value to 𝑛.

2. Run 𝐴 to find 𝐵𝐵(𝑛).

3. Simulate an empty input on 𝑇.

(a) If 𝑇 halts within 𝐵𝐵(𝑛) steps, accept.
(b) If 𝑇 has not halted within 𝐵𝐵(𝑛) steps, reject.

As shown, if the TM 𝐴 could compute 𝐵𝐵(𝑛), we would have solved the halting
problem. However, because the halting problem was shown to be undecidable in
Theorem 5.4, we have arrived at a contradiction. Thus, 𝐵𝐵(𝑛) is undecidable.

9

6.1 Implications of the Busy Beaver
Currently, the best candidate for 𝐵𝐵(5) is 47,176,870 (see [4], as well as Section
5 of [1]), and it is known that 𝐵𝐵(6) is at least 7.4 × 1036543 (see [2]). Research
about busy beaver numbers seems stagnant as these results were discovered using
supercomputers some 30 years ago. However, insights about this fast-growing
function could provide headway in other mathematical areas. For example, consider
the following famous conjecture from number theory:

Conjecture 6.4 (Goldbach, 1742). Every even whole number greater than two can be
expressed as the sum of two primes.

In 2015, an anonymous Github user proposed a 27-state Turing machine1 that
halts if and only if the Goldbach conjecture is false. If so, then 𝐵𝐵(27) would give
an upper bound on the number of operations this algorithm could perform. If
the maximum is exceeded before the machine halts, then the conjecture would be
proven true. On the other hand, if the algorithm halts within 𝐵𝐵(27) operations,
the conjecture would be proven false.

Similar results for many longstanding mathematical results can also be shown.
For example, Matiyasevich, O’Rear, and Aaronson2 showed in 2016 that a 744-state
Turing machine halts if and only if the Riemann Hypothesis, dubbed as the most
important conjecture in pure mathematics, is false. As for the Zermelo-Fraenkel
axioms, O’Rear3 created a 748-state Turing machine that halts if and only if ZF is
inconsistent. Using busy beaver numbers, we can reduce proving these conjectures
to finite-step computations.

7 Acknowledgements
First and foremost, we would like to thank to our phenomenal, cool, intelligent
mentor Alexandra Hoey!

Thanks to the PRIMES Circle program and the amazing coordinators Marisa
Gaetz and Mary Stelow!

Thanks to Sarah’s computer science teacher, Tom, Michael Sipser for writing
such an informative book, and Scott Aaronson for being very knowledgeable about
the busy beaver problem.

References
[1] S. Aaronson. The Busy Beaver Frontier, 2020.

https://www.scottaaronson.com/papers/bb.pdf

1See https://github.com/sorear/metamath-turing-machines/blob/master/zf2.nql
2The construction is given at https://github.com/sorear/metamath-turing-machines/blob/

master/riemann-matiyasevich-aaronson.nql.
3See https://github.com/sorear/metamath-turing-machines/blob/master/zf2.nql

10

https://www.scottaaronson.com/papers/bb.pdf
https://github.com/sorear/metamath-turing-machines/blob/master/zf2.nql
https://github.com/sorear/metamath-turing-machines/blob/master/riemann-matiyasevich-aaronson.nql
https://github.com/sorear/metamath-turing-machines/blob/master/riemann-matiyasevich-aaronson.nql
https://github.com/sorear/metamath-turing-machines/blob/master/zf2.nql

[2] P. Kropitz. Busy Beaver Problem. Bachelors thesis, CharlesUniversity in Prague,
2011. In Czech. https://is.cuni.cz/webapps/zzp/detail/49210/.

[3] J. Kun. Busy Beavers, and Quest for Big Numbers, 2012.
https://jeremykun.com/2012/02/08/busy-beavers-and-the-quest-for-big-numbers/

[4] H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS,
40:247–251, 1990. http://turbotm.de/~heiner/BB/mabu90.html.

[5] R. Mullins.What is a Turing machine? [illustration], 2012.
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/
turing-machine/one.html

[6] S. Lin and T. Radó. Computer studies of Turingmachine problems. J. of the ACM,
12(2):196– 212, 1965

[7] T. Radó. On non-computable functions. Bell System Technical Jour-
nal, 41(3):877–884, 1962. https://archive.org/details/bstj41-3-877/
mode/2up.

[8] M. Sipser. Introduction to theTheory of Computation (3rd ed.).Cengage Learning,
2013.

11

https://is.cuni.cz/webapps/zzp/detail/49210/
https://jeremykun.com/2012/02/08/busy-beavers-and-the-quest-for-big-numbers/
http://turbotm.de/~heiner/BB/mabu90.html
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/turing-machine/one.html
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/turing-machine/one.html
https://archive.org/details/bstj41-3-877/mode/2up
https://archive.org/details/bstj41-3-877/mode/2up

	Introduction
	Turing Machines
	The Recursion Theorem
	The Undecidability of ATM
	Mapping Reductions
	The Busy Beaver Problem
	Implications of the Busy Beaver

	Acknowledgements

